Introducing PLOVER 2k: Planning openings and values for Ellesmere's resilience 1

John F. Raffensperger Dept. of Management, University of Canterbury

Thanks to the many people who helped with this complicated project, Ken Hughey & Ken Taylor (2k), Ian Whitehouse, Graeme Horrell, Don Jellyman, Zach Hill, & Ed Hearnshaw

Line art by John F. Raffensperger, based on Walter Lawry Buller, *History of Birds of New Zealand*, 1888, image found on www.nzbirds.com/birds/wrybill.html

Different qualities in data

Strong. Causal relationships, good data. Example: water flows are based on existing NIWA model.

Okay. Correlative relationships, some data. Example: salinity depends on water depth, based on ECan data.

Hazy. Anecdotal data or speculative relationships. Example: blue-green algae calculated as a "threat" formula, based on a few reported events & general science.

When you consider scenarios, think about the strength of the data! Points a direction, not necessarily degree.

Factors in PLOVER

Simulate 38 years of actual past hydrology, 5 Jan 1970 to 31 Dec 2007.

No attempt to predict the future.

Hours sunlight from astronomical data.

Temperature from ECan data & line of best fit.

	2		Day of year	Hours sunlight	Water temperat ure, C
	19	Date			
	20	5-Jan-70	5-Jan	15:18	19.3
	21	6-Jan-70	6-Jan	15:17	19.4
	22	7-Jan-70	7-Jan	15:16	19.5
	23	8-Jan-70	8-Jan	15:14	19.5
	24	9-Jan-70	9-Jan	15:12	19.6
	25	10-Jan-70	10-Jan	15:11	19.7
	26	11 Jan 70	11 lan	15.00	10.8
ĸ	1888	24-Dec-07	24-Dec	15:25	18.3
13	8888	25-Dec-07	25-Dec	15:26	18.4
13889		26-Dec-07	26-Dec	15:25	18.5
13890		27-Dec-07	27-Dec	15:24	18.6
13891		28-Dec-07	28-Dec	15:24	18.7
13	892	29-Dec-07	29-Dec	15:24	18.7
13	8893	30-Dec-07	30-Dec	15:23	18.8
13	8894	31-Dec-07	31-Dec	15:22	18.9

Key: opening inputs & resulting depths.

Lake depth from NIWA "TIDEDA" model. Depends on openings.

First day to attempt opening.Trigger depth.

"On 1 Apr, if depth ≥ 1,130mm, try to open the lake."

FALSE: try for 30 days.1,200mm "circuit breaker".TRUE: keep trying to next date, with same depth trigger.

Half the water arrives in July & Aug.

1/3 the water comes 11 Sep to 3 May, 3 May to 16 July, 16 July to 11 Sep.

Example of roughness

Aug '73 was a rough month!

Depth > 1,050, but couldn't open.

Got it open, but couldn't *keep* it open.

The NIWA hydrology model does a good job simulating the lake, & its limitations are understood.

1319	27-Jul-73	27-Jul	1,249	Closed
1320	28-Jul-73	28-Jul	1,347	Closed
1321	29-Jul-73	29-Jul	1,427	Closed
1322	30-Jul-73	30-Jul	1,398	Open
1323	31-Jul-73	31-Jul	1,363	Open
1324	1-Aug-73	1-Aug	1,329	Open
1325	2-Aug-73	2-Aug	1,293	Open
1326	3-Aug-73	3-Aug	1,257	Open
1327	4-Aug-73	4-Aug	1,221	Open
1328	5-Aug-73	5-Aug	1,280	Open
1329	6-Aug-73	6-Aug	1,243	Open
1330	7-Aug-73	7-Aug	1,255	Closed
1331	8-Aug-73	8-Aug	1,267	Closed
1332	9-Aug-73	9-Aug	1,285	Closed
1333	10-Aug-73	10-Aug	1,301	Closed
1334	11-Aug-73	11-Aug	1,317	Closed
1335	12-Aug-73	12-Aug	1,287	Open
1336	13-Aug-73	13-Aug	1,255	Open
1337	14-Aug-73	14-Aug	1,224	Open
1338	15-Aug-73	15-Aug	1,191	Open
1339	16-Aug-73	16-Aug	1,159	Open
1340	17-Aug-73	17-Aug	1,125	Open
1341	18-Aug-73	18-Aug	1,092	Open
1342	19-Aug-73	19-Aug	1,058	Open
1343	20-Aug-73	20-Aug	1,025	Open
1344	21-Aug-73	21-Aug	1,043	Closed
1345	22-Aug-73	22-Aug	1,061	Closed
1346	23-Aug-73	23-Aug	1,077	Closed
1347	24-Aug-73	24-Aug	1,094	Closed

6

Area, volume, dissolved oxygen.

Lake area, detailed GIS data: AgriBase & NIWA LIDAR data.
33 land types: Arable cropping, Beef cattle, Dairy cattle, ...

Key: for each depth each day, PLOVER calculates area and cost of each land type covered.

Volume of the lake, from GIS data.

Dissolved oxygen, from ECan data.

Line of best fit, based on sunlight, wave height, lake level & temp.

Salinity, algae, turbidity

Ruppia, eel & flounder

Ruppia: sprouting only. No growth model.Chance of sprouting is a bell curvecentred on 29 Aug, with temp & salinity.

Eel: recruitment & migration only.

No growth or habitat. Chance of recruitment & migration are bell curves centred on 1 Nov & 1 May, and only if open.

Flounder: recruitment only.

- No growth or habitat. Chance of recruitment is a bell curve
- centred at 1 Oct, and only if open.

Duck hunting, wader habitat & population

Duck hunting:

lake depth on 1st Saturday in May.

Wader habitat:

habitat quality adjusted hectares. Expert assessment of GIS land types.

Wader population:

used 1 year of population data,

scaled by habitat area to baseline area.

Farm area covered.

Used the detailed GIS database. Used approximate \$/hectare/day, for each land type. Calculated total \$/hectare/day, for all land types. High-quality data, missing only wind lash.

Strengths & weaknesses of PLOVER 2k

Strengths

- Good hydrology model.
- Good GIS & land use data.
- Wader habitat is probably good.
 Could be used for other flora & fauna.

Weaknesses

- Hydrology model is deterministic.
- Lacks population & habitat for eel.
- Lacks growth & predation for ruppia.
- Lacks population component for all birds, except waders which is weak.
- Many factors are exogenous, e.g., inflows & nutrients.

If these were fixed, we could *better* estimate opening regime effects for eel, flounder, ruppia re-planting & birds.

14

Suggestions for improved models

- 1. PLOVER 3. Add growth & habitat for eel.
- 2. PLOVER 3. Add more details for ruppia. See Estrada et al.
- PLOVER 4. Use stochastic reservoir mgmt techniques. Create *conditional* rules, "If depth is lower than X on date Y, don't open." Add weather forecasts.
- 4. PLOVER 5. Model the catchment.Ground & surface water, nutrient run-off, impervious cover.We have the technology to do this now, and much of the data.A big job, but helpful for other purposes, too.

