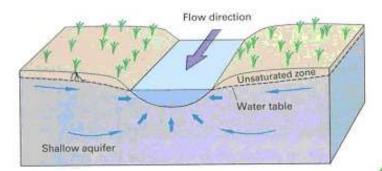
State of the Water: Te Waihora/Lake Ellesmere and Catchment

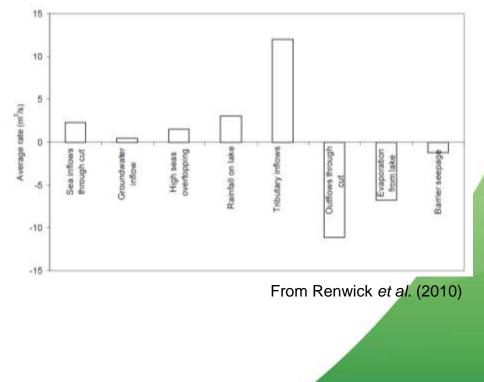
Kimberley Robinson


Topics

- Define "State of the Water"
- Background
- State of the lake Water
- Pressures
- Response

What do we mean by "State of the Water?"

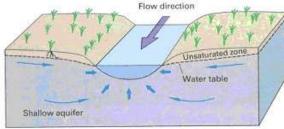
- Water Quantity
 - Rainfall and lake levels
 - Tributary streams
- Water Quality
 - Lake
 - Tributary streams
 - Groundwater



Background

- Water balance

 Inflows = rainfall,
 tributary inflows,
 seawater intrusion
 - Outflows =
 Intermittent lake
 openings,
 evapotranspiration



Environment Canterburv

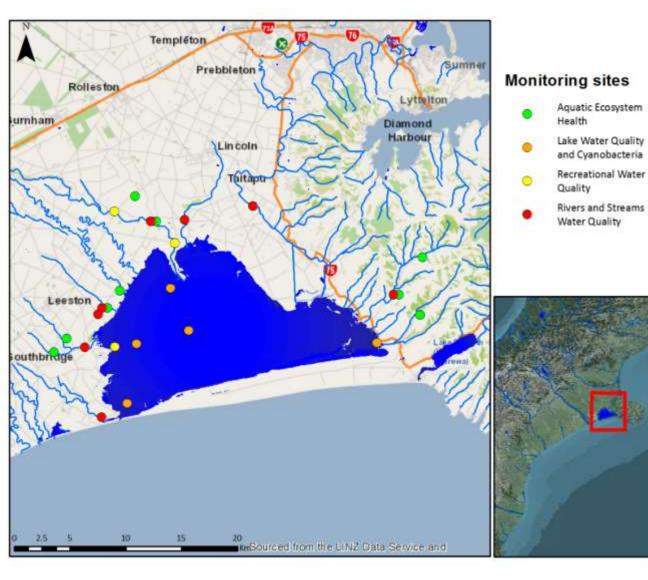
Background

Interconnected environment

 Surface water & Groundwater
 Freshwater & marine

Canterbury Regional Council

Background


- Phytoplankton dominated
 - 1968 shift from clear & macrophyte dominated, to phytoplankton dominated

- Supported by nutrient enrichment
- Cyanobacteria blooms
 - Potentially toxic species
 - Humans and animals
 - De-oxygenation = fish kills

State of the water quality

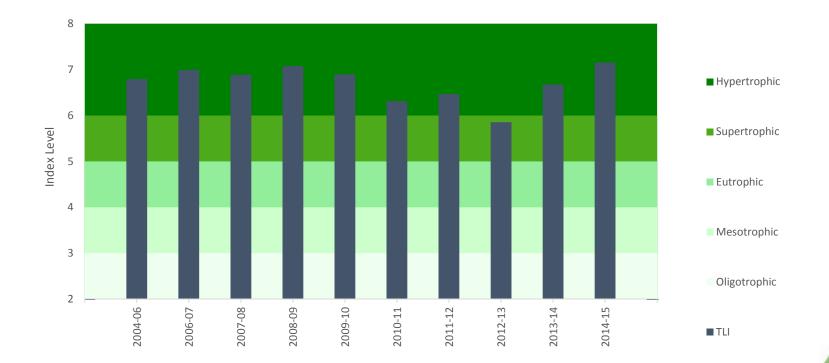
- Lake and tributary streams
- Water quality, ecology and recreational water quality
- Lake = water quality, phytoplankton/cyanobacteria, recreation
- Streams = water quality, aquatic ecosystem health, recreation

Environment Canterbury Regional Council

Determining Water Quality "State"

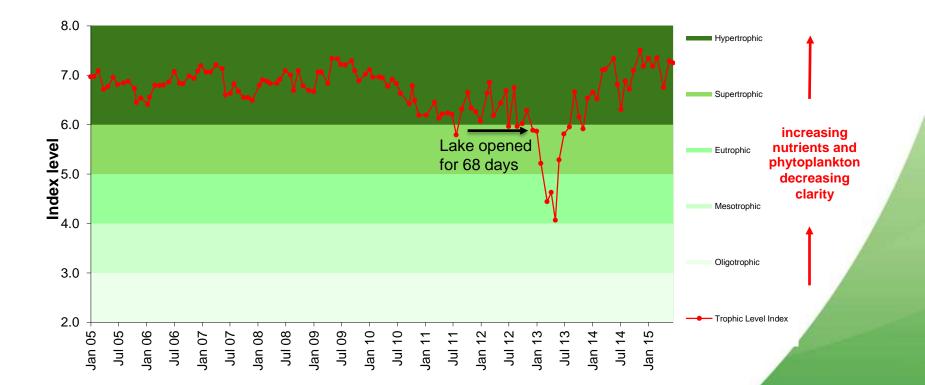
Indicators

- Are not direct measurements
- Calculated based on raw data
- Describe the general condition



Lake Trophic Status

- Indicator = Trophic Level Index (TLI)
 - Indicator of enrichment
 - Based on measurements of nutrients (TN & TP), algae/phytoplankton and water clarity


Te Waihora/Lake Ellesmere: TLI

increasing nutrients and phytoplankton decreasing clarity

ī	FLI	Tropic state	General Description
	<1	Ultra-microtrophic	practically pure, very clean, often have glacial sources
	1-2	Microtrophic	very clean, often have glacial sources, very low nutrient enrichment
	2-3	Oligotrophic	clear and blue, with low levels of nutrients and algae
	3-4	Mesotrophic	moderate levels of nutrients and algae
	4-5	Eutrophic	green and murky, with higher amounts of nutrients and algae
	5-6	Supertrophic	very high nutrient enrichment and high algae growth
	>6	Hypertrophic	saturated in nutrients, highly fertile, excessive algae growth

Monthly TLI

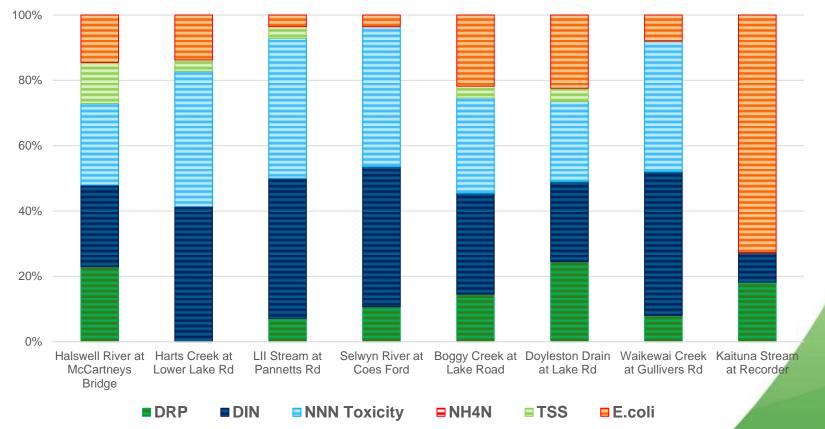
Pressure driving Lake TLI

 Nutrient enrichment from inflowing streams – supports increased algal growth

 Mixing and resuspension of benthic sediments and in-lake cycling of associated nutrients

Water quality of tributary streams

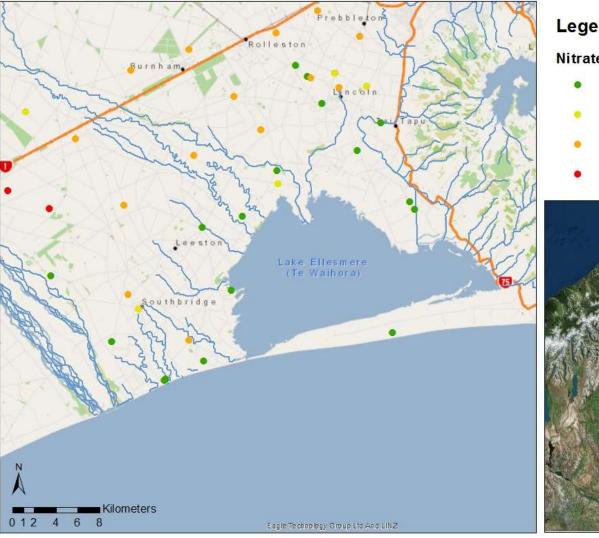
- Indicator = Water Quality Index (WQI)
 - Combined water quality measurements
 - nutrients (N & P)
 - water clarity
 - faecal bacteria



Te Waihora/Lake Ellesmere: WQI

	2010-11	2011-12	2012-13	2013-14	2014-15
Halswell River at McCartney's Bridge	Poor	Poor	Poor	Poor	Poor
Harts Creek at Lower Lake Rd	Poor	Poor	Poor	Poor	Poor
LII Stream at Pannetts Rd bridge	Fair	Fair	Poor	Poor	Poor
Selwyn River at Coes Ford	Poor	Poor	Poor	Poor	Poor
Boggy Creek at Lake Road	Poor	Poor	Poor	Poor	Poor
Doyleston Drain at Lake Rd	Poor	Poor	Poor	Poor	Poor
Waikewai Creek at Gullivers Rd	Fair	Fair	Fair	Poor	Fair
Kaituna Stream at Recorder	Poor	Fair	Fair	Fair	Fair

Te Waihora/Lake Ellesmere: WQI 2015



- Relative proportion of water quality measures that exceed thresholds
- Dissolved inorganic nitrogen and nitrate toxicity for stream life
- Faecal indicator bacteria for Kaitūna Stream
- Phosphorus inputs

Pressure driving water quality in tributary streams

- Faecal inputs
 - stock access or wipe-off losses in land drainage
 - Birds
 - Leaking septic tanks
- Phosphorus
 - Losses via drainage or soil erosion
- Elevated nitrogen concentrations
 - Nitrate leaching and upwelling groundwater

Groundwater influence

Legend

Nitrate Concentration

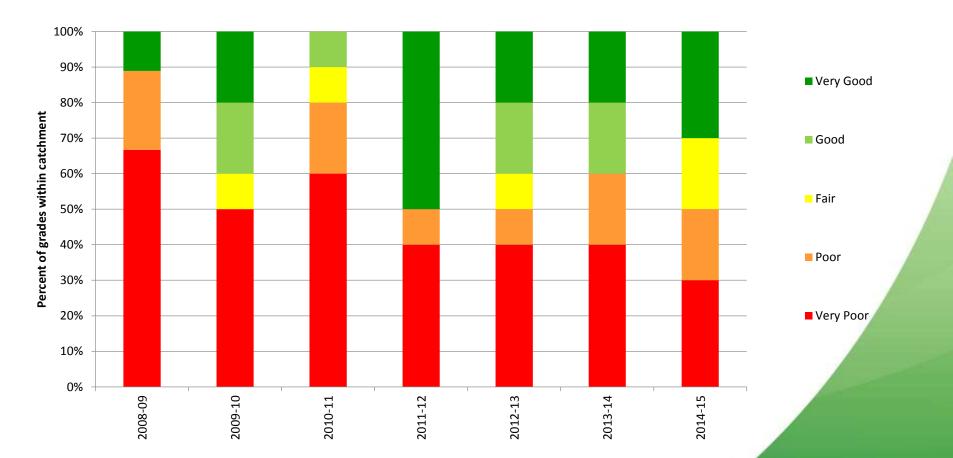
- <0.1 to 2.8 mg/L
- 2.9 to 5.6 mg/L
- 5.7 to 11.3 mg/L
- greater than 11.3 mg/L

ment

urv

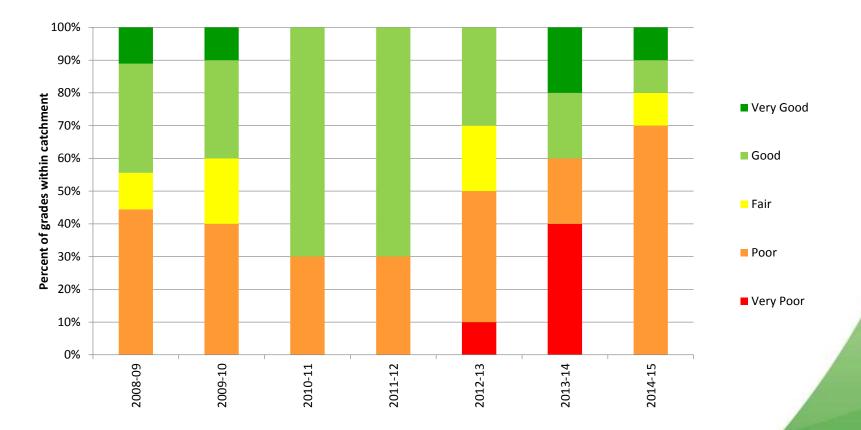
Council

Regional


Kaunihera Taiao ki Waitaha

- Nitrates > 5.7 mg/L near spring sources •
 - Above stream life toxicity thresholds

Aquatic Ecosystem Health of Tributary Streams


- Invertebrate taxa used as indicators of stream health
 - Respond to changes in water quality and habitat health over time
- Habitat data used to determine stream health
 - Sedimentation, algae or macrophyte overgrowth
 - Riparian fencing and planting
 - Land use

Invertebrate grades for tributary streams

- Improvement in invertebrate grades since 2010
- 50-60% of sites remain graded poor or very poor

Habitat Grades for Tributary Streams

Increase in poor or very poor habitat grades

Pressure on Aquatic Ecosystems

- Lack of intact riparian vegetation,
- High sediment inputs
- Excessive in stream plant growth supported by high nutrient inputs
- Reduced or intermittent flows
- Nitrate toxicity species loss?

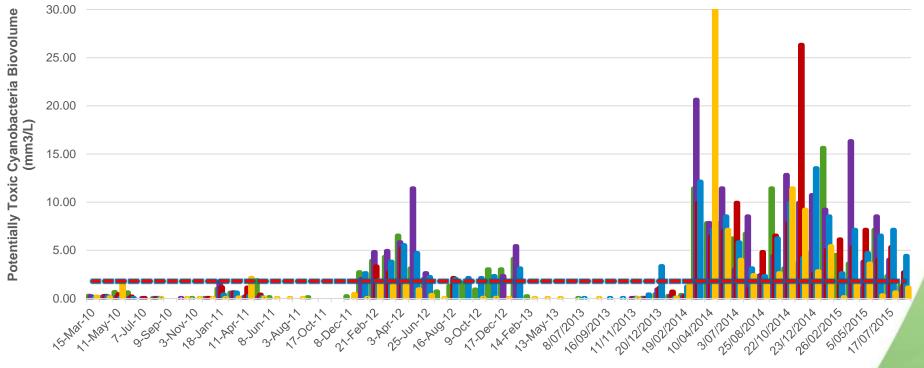
Suitability for recreation

	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15
Te Waihora/Lake Ellesmere - Domain	Good	Good	Good	Fair	Poor	Poor
Waikirikiri/Selwyn River - Chamberlains Ford	Good	Good	Good	Good	Good	Good
Waikirikiri/Selwyn River - Coes Ford	Very Poor	Poor	Poor	Poor	Poor	Poor
Waikirikiri/Selwyn River - Upper Huts	Poor	Very Poor	Very Poor	Very Poor	Very Poor	Very Poor

Potentially toxic cyanobacteria

- Characteristics of bacteria and algae
- Often referred to as "Blue-green Algae"
- Planktonic in Te Waihora/Lake Ellesmere
- Some Potentially Toxic/Harmful species

 Ability to produce cyanotoxins


Major Potentially Toxic Species in Te Waihora

- Anabaena
- Nodularia
- Picocyanobacteria

Mid Lake Taumutu/Fishermans Point Kaituna Off Selwyn River Mouth Sth of Timber Yard Pt/Lakeside Domain

- Nodularia bloom early 2012, followed by picocyanobacteria bloom
- Pico-cyanobacteria bloom since early 2014 present (nearly 2 years)
 - Pico-cyanobacteria are cyanobacteria too small to identify
 - Often don't produce bright green visible scum like appearances like Nodularia or Anabaena

Pressure on recreational uses

- Considered unsuitable for recreational activities involving full immersion
 - Sources of faecal contamination include livestock and birds
 - Contamination may arise in lake, or from tributary inflows
- Potential cyanotoxins production from cyanobacteria blooms
 - Cyanotoxins are harmful to humans and animals
 - Supported by elevated nutrients
 - N-fixers, more reliant on phosphorus
 - Iron

Catchment Pressures Summary

- Elevated nitrogen in groundwater tributary streams – Te Waihora/Lake Ellesmere
 - nitrate toxicity, cyanobacteria blooms, macrophyte/aquatic plant growth
- Phosphorus
 - cyanobacteria blooms
- Faecal contamination recreation
- Sedimentation smothers benthic habitat

Response

- Proposed Plan Change 1 (Selwyn-Waihora sub regional plan
 - Cultural zone around the lake
 - Improvement in agricultural practice
 - Beyond Good Management Practices
 - Stock exclusion rules for lake, waterways and drains
 - Minimum flow and restriction regimes in tributary streams

Response

- Whakaora Te Waihora, Living Water etc.
 - Restoration work
- Macrophyte re-establishment trials
- Wetland research for intercepting nitrogen inputs to the lake
- Stream augmentation

- E.g Boggy Creek and deep groundwater

Summary

- Elevated nutrients, faecal contamination, sedimentation, reduced flow impact the lake catchment ecosystem
- Regulatory plans and restoration work
 - Macrophyte trials, wetland research, stream augmentation

ronment